
THE WEIL REPRESENTATION

1. Preliminaries

Although a large part of the exposition works for more general fields
(of particular importance are p-adic local fields), we will stick to the real
numbers in this note.

1.1. Symplectic Space. A symplectic space over R is a vector space W
together with a non-degenerate anti-symmetric bilinear form ω ∈ ∧2W , the
symplectic form on W . The symplectic group Sp(W ) of W is defined
to be the subgroup of GL(W ) of elements that preserves the symplectic form
ω.

Remark 1.1.1. Following the commonly used convention when dealing with
Weil representations, we let Sp(W ) act on the right of W , and view ele-
ments in W as row vectors.

Proposition 1.1.2. dimW is even, and there exists an R-basis

{e1, · · · , en, f1, · · · , fn}

of W such that

ω(ei, fj) = δij , ω(ei, ej) = ω(fi, fj) = 0.

Definition 1.1.3. For a subspace L ⊆ W , we define

L⊥ := {w ∈ W : ω(w, l) = 0 for all l ∈ L}

A subspace L ⊆ W is called Lagrangian if L = L⊥.

For example, if {e1, · · · , en, f1, · · · , fn} is a standard basis of W , then
X = Re1 ⊕ · · ·⊕Ren and Y = Rf1 ⊕ · · ·⊕Rfn are Lagrangian subspaces of
W .

Proposition 1.1.4. A Lagrangian subspace of W is of dimension 1
2 dimW .

Moreover, for any Lagrangian subspace X ⊆ W , there exists a Lagrangian
subspace Y ⊆ W such that W = X ⊕ Y .

A decomposition W = X ⊕ Y with X and Y Lagrangian subspaces is
called a polarization of W . The example above also gives a polarization.

Definition 1.1.5. The set Λ(W ) of all Lagrangian subspaces in W is a com-
pact submanifold of the Grassmannian Gr(n,W ) of n-dimensional subspaces
of W , where we suppose dimW = 2n. Λ(W ) is called the Lagrangian
Grassmannian of W .
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Proposition 1.1.6. Sp(W ) acts transitively on Λ(W ), the stabilizer of a
point L0 ∈ Λ(W ) is a Siegel parabolic subgroup P (L0) of Sp(W ), so as
manifolds there is an isomorphism

Λ(W ) ∼= P (L0)\Sp(W )

1.2. Densities on vector spaces. Let V be a finite-dimensional real vector
space. For any α ∈ R, an α-density on V is a map ρ : ∧topV → R such
that

ρ(λx) = |λ|αρ(x) for λ ∈ R, x ∈ ∧topV

For example, any τ ∈ ∧topV ∗ defines an α-density |τ |α on V by

|τ |α(x) = |〈x, τ〉|α

The space of all α-densities on V is denoted Dα(V ). It is a one-dimensional
R-vector space. In particular, D1(V ) is exactly the space of volume forms
on V . In other words, it consists of all the real multiples of the Lebesgue
measure on V , or it consists of all the real Haar measures on V .

Proposition 1.2.1. There are natural isomorphisms

Dα(V )⊗Dβ(V ) ∼= Dα+β(V ), Dα(V )∗ ∼= Dα(V ∗) ∼= D−α(V )

Proposition 1.2.2. For vector spaces V1 ⊆ V2 ⊆ V3, we have a canonical
isomorphism

Dα(V3/V1) ∼= Dα(V3/V2)⊗Dα(V2/V1)

2. The Schrödinger Representations

In this section we fix a symplectic vector space (W,ω) of dimension 2n
over R. We will try to use coordinate-free constructions, but will give some
formulas in coordinates that are useful for concrete computations.

2.1. Heisenberg Lie Algebra. The Heisenberg Lie algebra associated
to (W,ω) is defined to be the Lie algebra on the vector spaceH(W ) = W⊕Rc
with Lie bracket given by

[w1 + t1c, w2 + t2c] = ω(w1, w2)c

It is a 2-step nilpotent Lie algebra over R. For any Lagrangian subspace
L ⊆ W , H(L) = L⊕ Rc is a maximal abelian subalgebra of H.

2.2. Heisenberg Group. The Heisenberg group associated to (W,ω) is
defined to be the group sturcture on the set H(W ) = W ⊕R (whose points
will be denoted (w, t) for w ∈ W, t ∈ R) given by

(2.1) (w1, t1)(w2, t2) = (w1 + w2, t1 + t2 +
1

2
ω(w1, w2))
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Remark 2.2.1. Why is there an 1
2 in the formula? Indeed it comes from

the BCH formula. As the name suggests, the Heisenberg group should be
viewed as the Lie group of the Heisenberg Lie algebra, so we consider the
formal exponentials eX for X ∈ H(W ). Since the Heisenberg Lie algebra is
2-step nilpotent, the BCH formula takes a rather simple form

eXeY = eX+Y+ 1
2
[X,Y ]

for X,Y ∈ H(W ), here comes the 1
2 . This also suggests that the “coordi-

nates” we used when writing an element in H(W ) as (w, t) is actually the
coordinate on the Lie algebra. In other words, the element (w, t) in H(W )
should be viewed as the formal exponential exp(w + tc).

The symplectic group Sp(W ) acts on H(W ) from the right as (w, t) · g =
(w · g, t). This action preserves the center Z = {(0, t) : t ∈ R} of H(W ).

For subsequent use, we define a variant of the Heisenberg group, denoted
H(W ), as the set W × T (where T is the set of complex numbers of norm
1) with multiplication

(w1, z1)(w2, z2) = (w1 + w2, z1z2e
2πiω(w1,w2))

There is an obvious group homomorphism

H(W ) → H(W ), (w, t) +→ (w, e2πiz)

with kernel isomorphic to Z in the center Z ∼= R.

2.3. The Schrödinger Representation. Take a Lagrangian subspace L
of W , then H(L) = L ⊕ R = {(l, t) ∈ H(W ) : l ∈ L} is a maximal abelian
subgroup of H(W ) (actually it is the image under the exponential map of
the maximal abelian subalgebra H(L) in H(W )). For a non-trivial additive
character ψ : R → T, we define a character ψL of H(L) by

ψL(l, t) = ψ(t)

The Schrödinger representation of H(W ) associated to L and ψ is the

unitary representation (πψ(L), Sψ(L)) := Ind
H(W )
H(L) ψL of H(W ) induced from

the character ψL on the subgroup H(L). Concretely, Sψ(L) consists of
functions ϕ on H(W ) that satisfies

(i) ϕ(ah) = ψL(a)ϕ(h) for a ∈ H(L), h ∈ H(W ).
(ii) The function ϕ, when viewed as a function on H(L)\H(W ), is square-

integrable. Note that in this case, since |ϕ| is left H(L)-invariant, the
simplest way to express this condition is that

!

H(L)\H(W )
|ϕ(h)|2dh < ∞

for some (hence all) Haar measure dh on H(L)\H(W ).
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And H(W ) acts on Sψ(L) by right translations. The inner product is given
by

〈ϕ1,ϕ2〉 =
!

H(L)\H(W )
ϕ1(h)ϕ2(h)dh

for some Haar measure dh on H(L)\H(W ). If we need to emphasize the
choice of the Haar measure, then this space will be denoted Sψ(L, dh).

Remark 2.3.1. Indeed this is cheating a little. The most rigorous way
of constructing induced unitary representations is first consider continuous
compactly supported functions, define a Hermitian inner product on it, and
take completion.

Let W = L ⊕ L′ be a polarization, then H(L)\H(W ) ∼= L′. we can
take L2(L′) to be the model of the representation πψ(L), and we record the
explicit formulas of the actions of some elements in H(W ):

(πψ(X)(l, 0)ϕ)(x) = ψ(ω(l, x))ϕ(x)

(πψ(X)(l′, 0)ϕ)(x) = ϕ(l′ + x)

(πψ(X)(0, t)ϕ)(x) = ψ(t)ϕ(x)

(2.2)

Remark 2.3.2. Now we take a basis of W as in Proposition 1.1.2, which
identifies W with the standard symplectic structure on R2n, and we take
ψ : R → T to be ψ(t) = e2πit. The resulting Schrödinger representation
is a unitary representation of the Heisenberg group on L(Rn), whose space
of smooth vectors is the space of Schwartz functions S(Rn) on Rn. Note
that we use the polarization W = Y ⊕ X and realize the representation
on L2(X). We can compute the corresponding Lie algebra action of the
Heisenberg algebra on S(Rn). It turns out that ek acts as multiplication
operators by 2πixk, fk acts as the differential operator ∂

∂xk
, and c acts as

multiplication by 2πi. This is more or less the position and momentum
operators in quantum mechanics.

2.4. Stone-von Neumann Theorem. It turns out that for different La-
grangian subspaces L, the representations πψ(L) are irreducible and unitar-
ily equivalent. Actually we can prove something even stronger:

Theorem 2.4.1 (Stone-von Neumann). For any Lagrangian subspace L,
the representation πψ(L) is irreducible. Moreover, any irreducible unitary
representation T of H(W ) such that T (0, t) acts as multiplication by ψ(t) is
unitarily equivalent to πψ(L).

This theorem tells us that the irreducible unitary representations ofH(W )
are determined by the central character. We will use (πψ, Sψ) to denote
“the” irreducible unitary representation of H(W ) with central character ψ.

TODO: add a proof of this theorem.
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2.5. Interwiners. Given Lagrangian subspaces L1, L2 of W , by the Stone-
von Neumann theorem above, we know that πψ(L1) and πψ(L2) are unitarily
equivalent. In fact we can write down an explicit interwiner FL2,L1 from
Sψ(L1) to Sψ(L2) by taking partial Fourier transform:

(2.3) (FL2,L1ϕ)(h) =

!

L1∩L2\L2

ϕ(l2h)ψ
−1
L1

(l2)dl2

This only defines the operator FL2,L1 up to a positive scalar, because we
do not have any specified Haar measure on L1 ∩ L2\L2. If we want to
emphasize the choice of the Haar measure, we will denote this operator by
Fδ
L2,L1

, where δ is a Haar measure on L2/L1 ∩ L2. Nevertheless, we know

that there exists a unique choice of Haar measures on L1 ∩ L2\L2 making
the operator FL2,L1 unitary. In this subsection we will keep track of all the
choices of measures, and to clear the ambiguity in the definition of FL2,L1 .

Let L be a Lagrangian subspace of W . Recall that the inner product
on the Hilbert space Sψ(L) depends on the choice of a Haar measure on
H(L)\H(W ) ∼= W/L, which can be canonically identified with the dual
space L∗ of L by means of ω. Thus for any e ∈ ∧topL − {0}, the corre-
sponding element |e| ∈ D1(L∗) ∼= D1(H(L)\H(W )) gives a Haar measure
on H(L)\H(W ) (see Section 1.2), and we define Sψ(L, |e|) to be the Hilbert
space Sψ(L, |e|) with inner product given by integration with respect to the
Haar measure |e|.

Suppose we are given forms e1 ∈ ∧topL1 − {0} and e2 ∈ ∧topL2 − {0},
so that we have Hilbert spaces Sψ(L1, |e1|) and Sψ(L2, |e2|). We are going
to find a Haar measure δ ∈ D1(L2/L1 ∩ L2) such that the corresponding
operator

(2.4) Fδ
L2,L1

: Sψ(L1, |e1|) → Sψ(L2, |e2|)
is unitary. To do this, we first recall that the symplectic form ω restricts
to a symplectic form ω′ on (L1 + L2)/L1 ∩ L2, and (L1 + L2)/L1 ∩ L2 =
(L1/L1 ∩ L2)⊕ (L2/L1 ∩ L2) is a polarization of ω′. The next isomorphism
will give us the choice of δ.

Lemma 2.5.1. We have an isomorphism of one-dimensional R-vector spaces

D1(L2/L1 ∩ L2) ∼= D
1
2 ((L1 + L2)/L1 ∩ L2)⊗D

1
2 (W/L1)⊗D− 1

2 (W/L2)

Proof. For a direct sum decomposition, we always have ∧top(V1 ⊕ V2) ∼=
∧topV1 ⊗ ∧topV2, so we have

D
1
2 ((L1 + L2)/L1 ∩ L2) = D

1
2 ((L1/L1 ∩ L2)⊕ (L2/L1 ∩ L2))

= D
1
2 (L1/L1 ∩ L2)⊗D

1
2 (L2/L1 ∩ L2)

By Proposition 1.2.2, this gives an isomorphism

D1(W/L1 ∩ L2) ∼= D
1
2 ((L1 + L2)/L1 ∩ L2)⊗D

1
2 (W/L1)⊗D

1
2 (W/L2)

Tensor both sides by D−1(W/L2) finishes the proof. □
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Let δ ∈ D1(L2/L1 ∩ L2) be the image of the element |ω′| 12 ⊗ |e1|
1
2 ⊗

|e2|−
1
2 ∈ D 1

2 ((L1 + L2)/L1 ∩ L2) ⊗ D 1
2 (W/L1) ⊗ D− 1

2 (W/L2) under the
above isomorphism.

Theorem 2.5.2. The operator Fδ
L2,L1

in (2.4) is a unitary equivalence.

TODO: add a subsection on the lattice model.

3. Weil Representation

3.1. The Projective Weil Representation. As before, let (πψ, Sψ) be
“the” irreducible unitary representation of H(W ) with central character ψ.
Recall that Sp(W ) acts on H(W ) from the right preserving the center of
H(W ), so for any g ∈ Sp(W ), we can twist the representation πχ by g,
namely we can define a representation πg

ψ of H(W ) by πg
ψ(h) = πψ(h · g).

Since the action of g preserves the center, πg
ψ also have central character

ψ, so by von Neumann’s theorem, they are unitarily equivalent, namely
there exists a unitary operator T (g) on Sψ that interwines πψ to πg

ψ. By

Schur’s lemma, T (g) is well-defined up to a scalar in T, so g +→ T (g) gives a
projective representation of Sp(W ), called the Weil representation.

To clear the ambiguity in the above definition of T (g), we make use of
the canonical construction of interwiners in the previous subsection.

Let L be a Lagrangian subspace of W , and take e ∈ ∧topL − {0}, so we
have a unitary representation (πψ(L), Sψ(L, |e|)) constructed in Section 2.3.
We will realize the projective Weil representation unambiguously on this
Hilbert space. The right action of Sp(W ) on H(W ) induces a left action of
Sp(W ) on functions on H(W ) given by

(A(g)ϕ)(h) = ϕ(h · g) for g ∈ Sp(W ), h ∈ H(W ), ϕ : H(W ) → C.
Clearly A(g) gives a unitary equivalence

A(g) : Sψ(L, |e|)
∼−→ Sψ(L · g, |e · g|)

where L · g is the image of the Lagrangian space L under the right action of
g, which is still Lagrangian, and e ·g is the image of e under the isomorphism

∧topL → ∧top(L ·g) induced by g : L → L ·g. We define T (g) = Fδ(g)
L,L·g ◦A(g),

which is a unitary operator on Sψ(L, |e|). The discussion in Section 2.5 shows
that δ(g) ∈ D1(L/L ∩ L · g) is given by the image of

|ω′|
1
2 ⊗ |e · g|

1
2 ⊗ |e|−

1
2

under the isomorphism in Lemma 2.5.1. Note that δ(g) is independent of

the choice of e ∈ ∧topL, because after a dilation of e by λ ∈ R∗, |e|− 1
2 differs

by the scalar |λ|− 1
2 , and |e · g| 12 differs by |λ| 12 , so they cancels to give 1.

This justifies the notation δ(g). Also this means we can suppress the choice
of e from our notations. So we have proved

Theorem 3.1.1. We have T (g)−1πψ(h)T (g) = πψ(h · g) as operators on
Sψ(L), so g +→ T (g) is a projective representation of Sp(W ) on Sψ(L).
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3.2. The Metaplectic Cover of the Symplectic Group. Since T is a
projective representation of Sp(W ), we can define a 2-cocycle c : Sp(W ) ×
Sp(W ) → T of Sp(W ) by T (g1g2) = c(g1, g2)T (g1)T (g2). This cocycle gives
a central extension of Sp(W ), on which the projective representation lifts
to a true representation.We will figure out the central extension in this
subsection.

TODO: add the computation of the cocycle via Maslov (Leray)
index.

3.3. Action on Gaussian Functions: n = 1 case. First we consider the
simplest case where W = R2 and ψ(t) = e2πit. In this case the (projective)
Weil representation of Sp2(R) = SL2(R) is realized on the space L2(R), or we
will restrict attention to the smooth vectors S(R) on which the Heisenberg
Lie algebra also acts. We record the concrete formulas for this action:

Proposition 3.3.1. The Weil representation T : "SL2(R) → U(L2(R)) is

given as follows: for g =

#
a b
c d

$
∈ SL2(R), ε = ±1,ϕ ∈ L2(R),

(3.1)

(T (g, ε)ϕ)(x) =

%
εi

1
2
(1−sgn(a))|a| 12 exp(πiabx2)ϕ(ax) c = 0,

εi
sgn(c)

2 |c|− 1
2

&
R exp(πic−1(ax2 − 2xy + dy2))ϕ(y)dy c ∕= 0.

In particular,

(T (

#
a

a−1

$
, 1)ϕ)(x) = i

1−sgn(a)
2 |a|

1
2ϕ(ax)

(T (

#
1 b

1

$
, 1)ϕ)(x) = exp(πibx2)ϕ(x)

(T (

#
−1

1

$
, 1)ϕ)(x) =

√
i · 'ϕ(x)

where 'ϕ(x) =
&
R exp(−2πixy)ϕ(y)dy is the Fourier transform of ϕ.

Let H = {τ = x + iy : y > 0} be the upper half complex plane. SL2(R)
acts on H by the usual fractional linear transformations.

Definition 3.3.2. A Gaussian function in S(R) is a function of the form
Eτ (t) = exp(πiτ t2) for τ ∈ H.

The Gaussian function Eτ is the unique solution of the ODE

∂

∂t
ϕ(t) = 2πiτ tϕ(t)

with initial condition ϕ(0) = 1. Note that we can identify the Heisenberg
Lie algebra H(R2) on R2 with Re ⊕ Rf ⊕ Rc with Lie bracket given by
[e, f ] = c and c central. The Schrödinger representation π of the Heisenberg
Lie algebra on S(R) is given by

e +→ ∂

∂t
, f +→ 2πit, c +→ 2πi
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So the above ODE can be written as

(3.2) π(e− τ f)ϕ = 0

where e − τ f is viewed as an element in the complexified Heisenberg Lie
algebra H(R2)C, on which the SL2(R)-action extends C-linearly.

For g =

#
a b
c d

$
, we would like to find the ODE satisfied by T (g)Eτ . By

(3.2) we have

T (g)π(e− τ f)ϕ = 0

namely

π((e− τ f) · g−1)T (g)ϕ = 0

(Note that we used the fact that T (g−1)T (g) is a constant.) So the ODE
satisfied by T (g)Eτ is

(3.3) π((e− τ f) · g−1)ϕ = 0

Since g−1 =

#
d −b
−c a

$
, we have

(e− τ f) · g−1 = ((cτ + d)e− (aτ + b)f)

so we can rewrite (3.3) as

π(e− aτ + b

cτ + d
f)ϕ = 0

This is exactly the ODE satisfied by Eg·τ . So we have proved

Proposition 3.3.3. For τ ∈ H, g ∈ SL2(R), T (g)Eτ is a scalar multi-
ple of Eg·τ . Namely, the projective Weil representation, when restricted to
Gaussian functions, recovers the standard SL2(R)-action on H.

We are interested in the scalar in this proposition, so let (T be the Weil

representation of the metaplectic group "SL2(R) on L2(R), for (g ∈ "SL2(R)
let g be the projection in SL2(R), then we have

Proposition 3.3.4.

(T ((g)Eτ = (cτ + d)−
1
2Eg·τ

Proof. Suppose (T ((g)Eτ = c(g, τ)Eg·τ (clearly the constant only depends on

the projection g of (g in SL2(R)). Since (T is a representation of "SL2(R), the
function c satisfies the cocycle condition

c(g1g2, τ) = s(g1, g2)c(g1, g2τ)c(g2, τ)

where s(g1, g2) is the cocycle of the central extension "SL2(R) over SL2(R).
Note that one model of "SL2(R) is

"SL2(R) = {(g,φ) ∈ SL2(R)×Hol(H) : g =

#
a b
c d

$
,φ2 = cτ + d}
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It turns out that the factor (cτ + d)−
1
2 satisfies the same cocycle condition

as c(g, τ), so it suffices to verify the equality on the generators of "SL2(R),
which is done by Proposition 3.3.1. □
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